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SUMMARY 

An adaptive-grid finite-difference method is applied to a model for non-isothermal, coupled flow and 
transport of brine in porous media. In the vicinity of rock d t  formations the salt concentration in the fluid 
becomes large, giving rise to disparate scales in the salt concentration profiles. A typical situation one 
encounters is that of a sharp freshwater-saltwater interface that moves in time. In such situations adaptive- 
grid methods are more effective than standard fixed-grid methods, since they refine the space grid locally 
and, hence, provide for substantial reduction in the number of grid points, memory use and CPU time. The 
adaptive-grid method of this paper is a static, local uniform grid refinement method. Its main feature is that 
it integrates on nested sequences of locally uniformly refined Cartesian space grids, which are automatically 
adjusted in time to follow rapid spatial transitions. Variable time steps are used to cope with rapid temporal 
transitions, including a fast march to possible steady-state solutions. For time stepping, the implicit, 
second-order BDF scheme is used. Two specific example problems are numerically illustrated. The main 
physical properties involved here are advection and dispersion and in case of dominant advection sharp 
freshwater saltwater interfaces arise. 

KEY WORDS Finite differences Adaptive-grid methods Local uniform grid refinement Method of lines 
Fluid flow/solute transport in porous media Brine transport 

1. INTRODUCTION 

We discuss the application of an adaptive-grid finite-difference method to a non-isothermal 
model for coupled flow and transport of brine in porous media. This model originates from 
a safety assessment study on disposal of radioactive wastes in rock salt formations, like salt 
domes. A characteristic of groundwater flow near salt domes is a large variation in the salt 
concentration in the flowing fluid. Recent theoretical and experimental hydrological studies 
indicate that in these situations the involved basic equations of flow and transport need to be 
re-e~arnined.~, These basic equations have been used traditionally in models where the salt 
concentration is low and more or less constant, e.g. that of seawater. However, a typical 
modelling scenario for flows near salt domes involves disparate scales in the salt concentration 
profile in the flow domain, as occurring, for example, with a moving freshwater-saltwater 
interface. The study of such flows requires a significant effort in numerical modelling and the 
work reported in this paper has its origin in such numerical modelling studies. The physical 
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model we use is similar to that in Reference 4, except that we employ the classical form of Darcy's 
law for the momentum balance equation for the fluid (brine) and Fick's law for the dispersion of 
the salt. On the other hand, while Reference 4 focuses on the idealized case of one spatial 
dimension (see also Reference 15), here we consider the two-dimensional case and also take 
temperature effects into account. 

For the computation of steep moving salt fronts, standard numerical methods may not be 
feasible because they necessitate a very fine grid covering the entire spatial domain for all values 
of time. In such cases, adaptive-grid methods provide a remedy. An adaptive-grid method refines 
the space grid only locally, hence striving for a substantial reduction in the number of grid points, 
memory use and CPU time. The adaptive-grid method applied in this paper is the local uniform 
grid refinement method discussed in our earlier papers." ~ l4 This method has been developed for 
the numerical solution of a wide class of time-dependent partial differential equations ( PDEs) 
having solutions with rapid transitions like steep moving fronts, emerging layers, etc. This class 
includes the current brine transport model and variants thereof. Our computer implementation 
has been written for two spatial dimensions. This, however, is no essential restriction. The 
adaptive-grid technique used can be extended to three spatial dimensions. 

In Section 2 we describe the brine transport model we have used and give the complete data set 
for two specific example problems. These two examples are connected with Intraval test case 1 3.7 
The main physical properties involved here are advection and dispersion and, in the case of 
dominant advection, sharp freshwater-saltwater interfaces arise. The section is self-contained so 
that interested readers can also use these two examples as test problems. In Section 3 we outline 
the adaptive-grid method for a general class of time-dependent PDEs. The main feature of the 
method is that it integrates on nested sequences of locally uniformly refined Cartesian space grids, 
which are automatically adjusted in time to follow rapid spatial transitions. For time stepping, 
the implicit second-order backward differentiation formula (BDF) is used. Variable time steps are 
used to cope with rapid temporal transitions, including a fast march to possible steady-state 
solutions. Our use of the implicit BDF method means that we treat the brine transport problem 
fully coupled. The arising coupled systems of non-linear algebraic equations are solved with the 
modified Newton method in combination with the iterative, preconditioned conjugate gradient 
squared method (CGS)" for the arising linear systems problems. The actual numerical illustra- 
tions are discussed in Section 4. We finish the paper in Section 5 with some final remarks. 

2. THE (2D) FLUID FLOW/SALT TRANSPORT PROBLEM 

2.1. The model 

In the modelling of transport of M solutes by groundwater flow, generally M + 1 sets of 
equations appear, viz., one set for each solute and a set for the flowing fluid.4 The set for the fluid 
constitutes the fundamental balance of mass of the fluid supplemented with Darcy's law. 
Similarly, for each solute the associated set constitutes the balance of mass supplemented with 
conservation of momentum through a Fickian law. In our case, the fluid is water impregnated 
with salt (brine) and there is only one solute, the salt. If temperature changes are important, an 
energy equation should be added. Also, if deformation effects of the porous medium and porosity 
changes are important, then an additional set of equations for the solid phase of the porous 
medium has to be provided. We will take into account the temperature, but deformation effects 
and porosity changes are omitted. It is further assumed that no external body forces except 
gravity exist and that the two brine components, water and salt, do not react or adsorb. Sources 
and sinks are also omitted here but can easily be added. 
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We, thus, consider a particular model for non-isothermal, single-phase, two-component 
saturated flow, which is constituted by a system of three PDEs basic to groundwater flow: 
a continuity equation (balance equation for the brine mass np) ,  a transport equation (balance 
equation for the salt mass concentration npw), and a temperature equation (balance equation for 
energy c"p"T). This model has been borrowed from Reference 4 and from the private note6 and 
is briefly described below. Since our purpose is to apply a numerical solution method, we have 
tried to omit, as much as possible, technical details which are of no direct interest for our purpose. 
Readers interested in such details and other background material are referred to Reference 1 (see, 
e.g. Chapter 7). This textbook discussed at length the derivation of closely related models for 
groundwater flow. 

The continuity equation supplemented with the Darcy law reads 

a K 
- (np)  + div( pq) = 0, 
a t  P 

q =-- (grad p - pg) ,  

where n is the porosity parameter of the porous medium, p the mass density of the fluid, q the 
Darcy velocity of the fluid, K the permeability tensor of the porous medium, p the dynamic 
viscosity of the fluid, p the hydrodynamic pressure and g the acceleration of gravity vector. 
Noteworthy is the fact that in low salt concentration cases one often works with the so-called 
Boussinesq approximation, which assumes that variations in the liquids density are negligible in 
the balance equation (1). This equation is then replaced by the standard continuity equation 

div q =O. (2) 

Hence, the flow is then supposed to be divergence-free and in numerical methods (2) is commonly 
replaced by a standard second-order elliptic equation (the density variation remains in the gravity 
term in Darcy's law). Throughout, we use ( 1 )  as our main interest is in the high salt concentration 
case, where the Boussinesq approximation should not be used. 

The transport equation supplemented with the Fickian law reads 

(3) 
a 
-inpo)+div(wpq+pJ")=O, J"=-nD grad 0 ,  d t  

where w is the salt mass fraction (mass concentration of the salt in the brine/mass density p of the 
brine), J" is the salt dispersion flux vector and D is the dispersion tensor of the solute salt defined 
as 

The coefficients d,, aT, (xL stem from molecular diffusion and transversal and longitudinal 
dispersion, respectively. Hence, wpq is the salt mass flux due to advection and p J" the salt mass 
flux due to molecular diffusion and mechanical dispersion (dispersion caused by flow). In real 
flow situations the molecular diffusion is usually significantly smaller than the mechanical 
dispersion. 

The temperature equation is given by 

q c m p n '  T )  
at +div(cTpq+JT)=O, JT=-H grad T ,  

where Tis temperature, c specific heat capacity of the porous medium, JT the heat flux vector and 
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H the heat conductivity tensor of the porous medium defined as 

The first term in (5) represents the variation of heat mass or energy cmpm T in the medium, the 
second term the advective flux of heat mass by the fluid, and the third the conductive flux of heat 
by both the porous medium and the fluid. The density expression cmpm in the first term of (5) 
satisfies the relation 

cmpm- - rtcp + ( 1 - 11) p5 cs , (7) 
where the second term refers to the solid phase. Material properties allow this term to be taken 
constant. In (6) the parameter K is the coefficient of heat conductivity and AT and iL are, 
respectively, the transversal and longitudinal heat conductivity coefficient. In most applications 
IC %AT,  I+ such that the diagonal matrix rcl dominates the tensor H. 

The density p and viscosity p are supposed to obey the state equations 

P = Po exp C. ( T- To) + P ( P  - P o )  + sol , (8) 

p = p o ( T )  m ( o ) ,  m(w)=l + 1-85w-4-Oco2, (9) 

where p o  is the reference density of fresh water, po a reference pressure, To a reference temper- 
ature, u a temperature coefficient, p a compressibility coefficient, y a salt coefficient and po(  T )  
a possibly temperature-dependent reference viscosity. In our examples the porosity n is taken 
constant and the permeability tensor K is chosen to be of the diagonal form K = diag K ,  where in 
the first example K is a constant too and in the second one K has a jump. 

The system of three balance equations ( l ) ,  ( 3 )  and ( 5 )  can be rewritten as a system having 
pressure p ,  salt mass fraction w and temperature T as dependent variables, in the numerical 
experiments, we have worked with this particular system. An elementary calculation yields 

do 
a t  

np-+ pq .grad (11 +div( p J") = 0 ,  

dT 
(? 1 

c"p"-+pcq, grad T+ div JT=O, 

where (10) is the brine flow equation, (11) the salt transport equation and (12) the temperature 
equation. Note that in the derivation of (12) the assumption that the expression ( l - n ) p s c s  
contained in (7) is constant is used. Equations (10)-(12) form a system of coupled non-linear 
parabolic PDEs. Equation (10) generalizes the standard continuity equation (2) used in the 
Boussinesq approximation. A special feature of the model is that the compressibility coefficient 
p is very small or even zero. If p = O ,  then the 3 x 3 matrix multiplying the temporal derivative 
vector ( p , ,  w,, 7;) is singular and (10) is effectively replaced by an equation without temporal 
derivatives, like in the Boussinesq approximation. We stipulate that for the implicit BDF 
integration method there is no need to distinguish between p=O and p#O.  

Equation (1 1) is of the advection-dispersion type and, as usual, numerically difficult to solve if 
it is advection-dominated. This depends on the relative size of the velocity vector q compared to 
that of the symmetric matrix nD. Let L, and L, be proper length scales in the x- and y-direction, 
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respectively. Then, if we put xT = a,., we recover the one-dimensional, 

L y q 2  Pe ,  = 
L 4 1  Pe ,  = 

n d m  + I T  I qj' ndln + @T 14 I . 
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scaled Peclet numbers 

(13) 

If xT #u,, then the derivation becomes more intricate as the cross derivatives as well as the size of 
the two velocity components play a role. However, as a rule of thumb, one may still use the Peclet 
numbers (13) as a first measure of the dominance of advection. In practice, one encounters values 
for Pe, and Pe,, in the range lo2 lo4, say. 

For the temperature equation ( 1  2), which is similar to (1 1) and of the advection-heat-conduc- 
tion type, the situation is somewhat different, In realistic brine transport applications H is largely 
determined by the diagonal contribution XI, because normally x>> AT,  &.. Hence, here the ratio 
between advection and heat conduction is largely determined by the quotient of K and the 
components of pcq. Specifically, denoting q = [q l ,  q2IT, the one-dimensional scaled Peclet num- 
bers are now Pe,= L , p c q , / ~  and Pe,=L,pcq,/u. These numbers measure the dominance of 
advection, provided K I  dominates H. As a rule, the dominance of advection in (12) will be less 
than in (1 l), and (12) will more or less behave like a standard parabolic equation with a modest 
advection term. 

2.2. Dutu for example problem I 

Our examples are connected with Intraval test case 13 described in Reference 7. This laborat- 
ory experiment deals with the displacement of fresh water by brine in a thin vertical column filled 
with a porous medium. Salt water of a high concentration is injected through gates at  the bottom 
of the column giving rise to a freshwater saltwater front moving in all directions into the column. 
In Reference 7 the experiment was carried out under isothermal conditions. We assume non- 
isothermal conditions and suppose that warm brine is injected. Because the column is very thin, 
the flow can be considered as being two-dimensional in space. In our numerical experiment 
(discussed in Section 4) it is supposed that two gates are used for saltwater injection so that 
initially two disjunct saltwater-freshwater fronts exists which later interact and merge into one 
front. Due to dispersion, the fronts smooth out with time in all directions. For f sufficiently large 
the fronts disappear completely which means that the whole medium is filled with the high salt 
concentration fluid. 

In Example I the model is considered on the time-space domain [O < t 6 tend] x R, where the 
flow domain R representing the vertical column is the unit square R =  ((x, y ) :  O<x, y <  1 ). Below 
we will write p(x, y ,  t), etc., and since R represents a vertical cross-section, the independent 
variable y stands for a vertical variable with unit vector pointing upward. Hence, the acceleration 
of gravity vector takes the form g=(O, -g),  where g is the acceleration due to gravity. The initial 
values at t = 0 at !2 are taken as 

p ( x . J . ' , o ) = p ~ + ( 1 - ~ ) p o g ,  o ( x , y ,  O)=O. T ( x , y .  O)=T,, (14) 

which correspond, respectively, to hydrostatic pressure, fresh water and a non-heated medium. 
For 0 < t d tend the following boundary conditions are imposed: 

x=O, 1 and O < y < l :  
aw a T  
ax ax 41 =o, -=o, -=o, 

dT 
- 

y = l  and O < x < l :  a. 
aY 

-0, -=o, 0 P'PO? - 
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The third line is connected with the two gates where the warm brine is injected with a prescribed 
flux and velocity. The other conditions are self-evident. All remaining problem data are contained 
in Table I .  

2.3. Data for example problem II  

The numerical method can handle jumps in the permeability by imposing continuity of fluxes 
over the permeability interfaces into the finite-difference spatial discretization scheme. Inside the 
regions, where the permeability is continuous, the PDEs are then treated in the standard way. 
This second example, which is a modification of Example I, serves to illustrate this. However, we 
here consider the extreme case of total impermeability for part of the flow domain. The 
impermeable region is {(x: y ) ;  OGxGO.5, 04<y<O.6} .  We also consider the flow now to be 
isothermal and incompressible ( f i  = 0). 

Because inside the region of impermeability both (10) and (1 1) reduce to i?w/at = 0, we replace 
them by 

Ax, Y ?  t ) = P o + U  - Y ) P * Y ,  4 4  Y?  t ) = O ,  (16) 

and solve outside the region the original continuity and transport equation, using all further 
problem data of Example I. The first equation of (16) means hydrostatic pressure. This is 

Table I. Data for example Problem I 

Porosity 
Permeability 
Acceleration due to gravity 
Molecular diffusion 
Transversal dispersivity 
Longitudinal dispersivity 
Heat capacity (cf) 
Heat conductivity 
Transversal heat conductivity coefficient 
Longitudinal heat conductivity coefficient 
Solid heat capacity 
Solid density 
Freshwater density 
Reference temperature 
Reference pressure 
Temperature coefficient 
Compressibility coefficient 
Salt coefficient 
Reference viscosity 
Reference salt mass fraction 
Vertical inlet velocity 
Inlet temperature 
End value of time 

0.4 
1 0 - 1 0  

9.81 
0 
0002 
001 
41 82 
4.0 

1 0 - 2  
840 
2500 
lo00 
290 

1 0 - 3  

lo5 
-3.ox 10-4 
4.45 x 10-'0 
In 1.2 

0.25 

292 
106 

1 0 - ~  
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a natural condition in view of the fact that we impose total impermeability. The second equation 
is the now-trivial transport equation. This equation is also natural because inside the region of 
impermeability the salt concentration is to remain zero. The requirement of continuity of fluxes 
thus leads to the additional conditions 

Of course, these flux conditions can also be interpreted as new boundary conditions because the 
modification of Example I amounts to a modification of the flow domain. 

3. THE ADAPTIVE-GRID METHOD 

3.1. Static regridding and local unform grid re$nement 

For time-dependent PDEs two sorts of adaptive-grid methods are distinguished, dynamic and 
static methods. While dynamic (in time) methods adapt the grid in a continuous-time manner, like 
classical Lagrangian methods, static (in time) methods adapt the grid only at discrete times. Our 
method is of the static type and based on the technique called Local Uniform Grid Refinement 
(LUGR). Here we present an outline of this technique. 

The LUGR idea is to cover Q u d Q  with a sequence of locally nested, uniformly refined subgrids 
which are adapted at discrete times to follow rapid spatial transitions. We adapt at each time level 
and each (full) time step then consists of repeated integrations on the nested finer-and-finer local 
subgrids. Within each full time step the integration starts at the coarsest base grid and each of the 
single integrations spans the same time step. Loosely speaking, on each local subgrid we 
repeatedly solve a new initial boundary value problem. Required initial values are defined by 
interpolation from the next coarser subgrid or taken from a possibly existing subgrid from the 
previous time step interval. Boundary values required at  internal boundaries are also interpolated 
from the next coarser subgrid. The generation of the nested subgrids is continued up to a level 
considered fine enough for resolving the fine-scale structure at hand. Having completed the 
integration on the finest level, the process is repeated for the next time step. We then use the most 
accurate solution available and grid points already existing at a certain level of refinement are 
used for step continuation. In conclusion, assuming a one-stage implicit integration scheme like 
the backward differentiation method (BDF),8 each full time step consists of the following 
operations: 

1. Integrate on the coarse base grid. 
2. If the desired accuracy in space or the maximum number of levels is reached, go to 7. 
3. Determine new finer uniform subgrid at forward time, 
4. Interpolate internal boundary values at forward time. 
5. Provide required solution values at backward time levels. 
6. Integrate on gridlevel using the same steplength and go to 2. 
7. Inject fine grid values in coinciding coarse grid points. 

An important point to notice is that we repeatedly use all subgrids, in the order from coarse to 
fine. This way we generate the required boundary conditions at  the internal boundaries and keep 
the local subgrids uniform. This approach necessarily leads to some overhead costs. On the other 
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hand, the work load on the coarser grids will normally be small and we consider the use of 
uniform grids attractive. Uniform grids allow an efficient use of vector-based algorithms and 
finite-difference approximations on uniform grids are more accurate and faster to compute than 
on non-uniform grids. In this respect, the current approach is to be contrasted with pointwise 
refinement leading to truly non-uniform grids. Finally, the actual refinement is cellular and 
carried out by bisection of the sides of grid cells. We refer to the figures presented later in the 
paper for an illustration of the LUGR grid structure. 

3.2. The mathemu tical formu la tion 

We will now give a mathematical formulation of the LUGR method when using the implicit 
BDF method for time stepping. Following the method of lines approach, the LUGR method can 
then be formulated in a mathematically comprehensive way for a wide class of PDEs. To this end, 
we consider the abstract Cauchy problem for the following general system of equations 

a x ,  Y ,  t, u, ut, u x ,  uy, uxx, %xy, u,,)=O (x, Y ) E Q ,  t>tO, 

H(x,4’,t,U,UlrUr,uy)=0, ( x , Y ) E m  t > t o ,  (18) 

u(x,y, to)=uO(x,j’), (X,y)Enuan,  t=to,  

while the two-dimensional space domain R is here supposed to be of rectangular form. Needless 
to say that the brine transport problems of the previous section fit into the general format (18). 
We suppose the PDE problem to be of second-order in space and, for at least one component, 
first-order in time. Trivially, we also assume that the specific problem at hand that fits into format 
(18) is well-posed and possesses a unique solution u(x, y ,  t) .  This vector-valued solution u(x, y, t )  
is also supposed to be as often differentiable on ( R u d R )  x { t > t o )  as the numerical methdd 
requires. Recall, however, that we aim at non-smooth solutions, like steep travelling fronts. Thus, 
here, non-smoothness means the occurrence of rapid transitions in the space-time domain, with 
a sufficient degree of differentiability. 

LUGR methods use local subgrids of varying size in time and, thus, generate approximation 
vectors of a varying dimension. This varying dimension complicates the formulation. We 
circumvent this problem by expanding the fine local subgrids over the entire domain RudR,  so 
that integration takes place over the fine local subgrids and interpolation over their entire 
complement in SZudQ. However, interpolation over the entire complement is redundant in the 
actual application and, thus, takes place only in the formulation. We return back to this point 
later. 

Let ak, 1 < k < r,  be uniform space grids with the integer r denoting the number of refinement 
levels. For simplicity, we supposc here that r is fixed. Each grid covers the whole of QuK! and 

is obtained from fz, by cellular refinement. With (18) we now associate the differential- 
algebraic equation (DAE) system 

obtained by spatial discretization on R, u SR,. We employ second-order finite differences, which 
is easy due to the uniformity of the grids. At interior points, the standard central scheme is used 
and on boundaries a combination of this central scheme with a one-sided scheme. Hence, Uk and 
Fk are grid functions on Qk and it is assumed that solution components existing at  2R are 
contained in u k .  This means that the semi-discrete boundary conditions are treated as algebraic 
equations. Consequently, in virtually any application equation, ( I  9) is a DAE system, even if 
&/at  in (18) can be explicitly specified. 
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We next introduce some more notation. Let d, be the length of Uk and let Sk with dim Sk = d ,  be 
the vector space of grid functions on Q k .  The adaptive-grid method is formulated as an 
approximation method in the spaces ( S , )  where U ;  E Sk denotes the approximation to the natural 
restriction of u ( x ,  y, r )  on R u d R  to 0, at time t = t , .  We will employ the following four matrix 
operators : 

1. the unit matrix Ik : S k + S k ,  

2. a diagonal matrix D; : Sk+Sk with entries (D;) i i  either unity or zero; 0; = I , .  
3. the natural restriction operator Krk : Sr+Sk from R, to Qk. 
4. an interpolation operator Pk . : Sk , -+Sk from Ilk to 0,. 

For DAF, systems like ( 1  9) we denote the well-known implicit s-step BDF integration method by 

where At = t, - t ,  and V"- is the history vector qollecting values computed at backward time 
points. In this formulation the step size At may be considered variable. If At = At ,  is variable, then 

The full I,UGR time step from t ,  - to t,, which consists of Y consecutive integration/interpola- 
the integration coefficients aj are dependent on the previous step sizes At,-  ~ . . . , At , - ,+  8 

tion steps on the grids Q,,  sZz, . . . , Qr, is now shortly formulated as 

and the matrix DC is supposed to be known prior to the computation at grid a,. These diagonal 
matrices define the local subgrids upon which the actual numerical integration step is carried out. 
Specifically, if at a certain node integration is to take place, then, by definition, 1, while at 
nodes where interpolation is carried out, (D,")ii=O. The actual definition of D i ,  and, hence, the 
actual selection of integration and interpolation nodes, is made by the refinement strategy, which 
is discussed later. The nesting property of the integration domains is also induced by this strategy 
and cannot be recovered from the above formulation, as it is hidden in the actual definition of U,". 

Formula (21a) represents the interpolation step. Note that for k =  1 formula (21a) is auxiliary 
since 0; = I ,  (also Uz-  does not exist for k =  1) .  The choice of interpolant is, in principle, still free, 
but we mostly work with the fourth-order Lagrangian interpolant. Formula (21 b) represents the 
implicit BDF integration step over the local subgrid in use, which is carried out after the 
interpolation step (21 a). The history vector formula (21 c) contains the restriction operator Rrk, 
showing that at each grid level the finest grid solutions from past time levels are used for step 
continuation. Observe that (21 b) is coupled to (21a), since the evaluation in (21 b) calls for solution 
components of U," living at grid interfaces (internal boundaries) through the coupling in the 
finite-difference grid. These grid interface components are defined by the interpolation step (21 a). 

Obviously, (2 1 )  contains redundant operation because it describes a computation in the (grid 
expanded) spaces Sk, In paractice we of course only execute (21b) at nodes for which the 
assoLlated entry of DC equals one. Furthermore, we apply restricted interpolation, which means 
interpolation only at nodes where needed, rather than over the whole of the grid Q k - 1 ,  as 
suggested by (2 la). We stress that this restricted interpolation does not interfere with the 
formulation, due to the implicit assumption that the local subgrids are nested and, hence, that 
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interpolation nodes are always located in the previous subgrid. Consequently, (2 I )  provides an 
exact description of the computed approximations in reality, but it also defines redundant values 
as a result of formulating in the (grid expanded) spaces S k .  Trivially, in the actual application we 
omit the redundant operations to reduce the overhead costs. 

3.3. The refinement strategy 

A strategy should fulfil two basic accuracy requirements. It should induce a sufficient local 
refinement in regions where the spatial errors are larger than elsewhere, and it should involve 
automatic control of the inevitable interpolation errors. This second requirement is often 
neglected, but may be of significant importance. The reason is that if we regrid at each time step, 
we interpolate at each time step. Interpolation errors then can accumulate linearly with the time 
steps, so that reducing At may eventually result in error growth, rather than in error decay. 
Although less, this threat remains if we would not regrid at every time step, but per certain 
number >l of such steps. 

In Reference 12, where implicit Euler is,considered (s= 1 in (20)) for the explicit ODE case 
dU,/dt=P(t, U ) ,  we have developed a strategy which meets both requirements. There we 
demand that the refinement is such that the spatial accuracy on the composite final grid is 
comparable to the spatial accuracy on R, if integration would take place on the whole of R, 
without any adaptation at  all. As far as accuracy is concerned, this is the maximum we can ask for. 
In addition, this way we force the interpolation error to remain negligible when compared with 
the common spatial error on $2,. This means that the accumulation of the interpolation errors is 
automatically controlled. The refinement analysis of Reference 12 can be extended straightfor- 
wardly to the s-step BDF method for the explicit ODE case. However, for genuine DAE problems 
like ( 1  9), this extension is not straightforward (the spatialy discretized brine transport problem 
with zero compressibility coefficient p is a genuine DAE problem). We will, therefore, report the 
refinement analysis for this more difficult case in a sequel to this paper and use instead here the 
more simple strategy developed in Reference 11. This refinement strategy is heuristic in the sense 
that the two accuracy requirements above are not really guaranteed. However, according to our 
experience, it will work very satisfactorily in most practical cases. 

The strategy from Reference 11 decides which grid cells from the current integration domain 
will be refined, as well as the number of levels. Hence, the number of grid levels r may now vary 
from time step to time step. The strategy is governed by a user-specified tolerance number TOLS 
and by the curvature expression 

ESTS=(Ax)2 luxxI+(AY)z l ~ y y l  3 (22) 
which is computed using the five-point finite-difference scheme. Note that ESTS acts as a local 
spatial error indicator. The ESTS values are componentwise scaled with scale(ipde), which is 
a user-specified scaling value for the estimated size of the component ipde in the PDE system. 
Hence, we use a relative-error indicator. 

Suppose we have just completed the level-k integration of the time step t n - l - + t n .  We then 
compute the maximum EST,,, of the scaled ESTS values over all grid points of the level-k 
integration domain. If EST,,, < TOLS, then the local refinement for the current time step is done 
and the full time step is finished. If EST,,, > TOLS, then it is decided to create a new grid level 
( k  + 1) within the time step t,- +tn and a newly refined local subgrid is determined. To determine 
the new level ( k  + 1) subgrid, all scaled ESTS values are subdued to a second accuracy test which 
reads 

ESTS > 2- *vk+ EST max > (23)  
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where r is the anticipated number of refinement levels, which is estimated as 

r= entier [log(EST,,,/TOLS)/2 log 23 + k + 1. 

In addition, we impose r < MAXLEV, the user-specified maximum number of levels allowed. 
Note that (23) is more stringent than the first test, EST,,, > TOLS. If (23) holds at a grid point, the 
four cells surrounding this point will be placed in the newly refined subgrid and once all tests (23) 
have been made, the refined grid cells are clustered together to form the newly refined subgrid 
upon which the integration step tn-  -+t, is to be redone. This subgrid may be disjunct. We refer 
to Reference 11 for a justification of (23) and for other details on the implementcd refinement 
strategy. This paper also gives a more or less full account of the data structure, memory use, 
interpolation aspects, etc. 

3.4. Time integration aspects 

We have implemented the two-step BDF method (20) of order two which we apply in the 
variable step size mode. The integration coefficients then are 

a ,  =(c+l)2j(c2+2c) ,  a2=- l / ( c2+2c) ,  fI,=(c+ l)/(c+2), (25) 

with c = At,, ~ /Atn the bounded step size ratio. We recall that variable time stepping is a prerequi- 
site for our example problems as they show a highly distinct behaviour in time. As starting 
formula. we employ the one-step BDF method (20) of order one (backward Euler). 

The following simple step size strategy has been implemented. For the backward Euler step we 
use the rime error monitor (At)&/& and for all following steps 1 / 2 ( A t ) 2 ~ 2 ~ / d t 2 .  Hence, the 
temporal local error control is based on the last Taylor term taken into account by the 
integration formula. The derivatives are estimated by using the available approximate U-values at 
the current time level t,, and past levels 1, - t, - (simple differencing). After each level integration 
step, we invoke the test 

ESTT GTOLT , (24) 

where TOLT is a user-specified time error tolerance and ESTT is the maximum of the monitor 
values computed over the integration domain in use. Also here scaling of ESTT is carried out. If 
(26) is false, then the full time step is rejected. Otherwise, the level integration step is accepted. For 
each such step a new At is computed such that the predicted value of the monitor is equal to 
TOLT/2. The minimum of these new At values is then taken as the step size At,,, to be attempted 
in the new full step. However, in case of a step rejection, At,,, =O.SAt,,, and in all cases we 
require that Atold/3 d At,,, < 2At,,, to avoid too large jumps in the step size selection. Finally, 
At,,, is corrected with a small number to assume that the next output point always coincides with 
a time level l,, assuming that till the next output point At does not change. 

3.5. The solution of the non-linear and linear systems 

Because we use an implicit integration method and treat PDE problems like (10)-(12) fully 
coupled, we are facing the task of solving large coupled systems of non-linear algebraic equations. 
Note that this is required for each grid level within any full time step and that the dimension of the 
systems varies per full time step and per level. Needless to say that the implicit equation solution 
is highly important for efficiency and robustness. In our research code we use the modified 
Newton method (Jacobian computation only at the start of the iteration) in combination 
with the iterative, preconditioned conjugate gradient-squared method (CGS)1° for solving 
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the arising coupled systems of linear algebraic equations. In the remainder of this section we will 
briefly outline how we use the iterative modified Newton and CGS methods. 

The Newton implementation ideas have been borrowed from Reference 2 and are to a large 
extent determined by the PDE system format (18). For any PDE problem fitting in this format, 
the required Jacobian matrix for the Newton process is computed in a completely automatic 
manner. To illustrate this, consider the 1D form 

G(%,  ax,  .,,)=O, (27) 

for which the Jacobian matrix is tridiagonal. Recall that we use central three-point finite 
differencing on a uniform space grid with grid distance Ax. The diagonal entries, corresponding 
with internal grid points, are then easily seen to be defined by the functional 

Similar expressions are easily found for the non-diagonal entries and for grid points whose 
finite-difference expression is dependent on the boundary condition. Tn our research code the 
partial derivatives are estimated by a simple first-order difference formula, so that the user does 
not need to specify these. For the general format (1 8) the Jacobian computation goes completely 
identical. See Reference 9 for related work. 

The Jacobian is computed at the beginning of each integration step. A difficulty at the initial 
time step is that, in general, no expression for &/at is available in explicit form. At the initial time 
step we, therefore, put the temporal derivative to zero and to compensate for this rough guess we 
use the damped modified Newton iteration with a damping factor equal to 0 7 5  and allow 
a maximum of 20 iterations to get the integration started. This difficulty exists only for the initial 
coarse grid step, because in all other cases solution approximations are available to generate 
approximations for &/(st. In these cases we use the modified Newton iteration without damping 
and allow a maximum of 10 iterations. 

The Newton stopping criterion is based on the relative change in successive solution values. It 
reads 

where 
wipdrii= 10-2min(TOLS, T0LT)max [ I u & . ~ ~ I ,  10-2scale(ipde)]. (30) 

The upper index k refers to the kth Newton iterate, the lower index ipde to the ith PDE 
component, and the lower index i to the grid points in the two-dimensional integration domain. 
Note that the stopping criterion is a relative-error test. We decide that the Newton iteration 
terminates unsuccessfully when either the stopping criterion is not satisfied after the allowed 
maximum number of iterations, or when the relative change in successive solution values is 
increasing and the stopping criterion is not satisfied. If this is the case, then the current time step is 
rejected and we repeat this full time step with Atnew=Atold/4. 

The linear systems arising in the iterative Newton process are iteratively solved using the CGS 
method with ILU preconditioning." For this purpose we incorporated the public domain code 
from the SLAP library written by Anne Greenbaum and Mark K. Seager, which is available from 
Netlib.3 This code performs quite successfully for our brine transport applications, and also in 
other tests, but needed some adaptations because its breakdown and stopping criteria are 
obviously not intended for solving subsequent iterations in a Newton process. For example, the 
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stop criterion in the Netlib code is relative to the right-hand-side vector which vanishes in the 
Newton iteration. Here we experienced some difficulties. If we denote the non-linear algebraic 
equation system by R( Y)=O and the kth linear system to be solved by 

(31) 

our (still heuristic) stopping criterion reads 

1 
(32)  

I(K - r ( ’ ) h p d e ,  I I  maxLpde max,- ~~~ ~ < - 
M’ipde, I 2 x maximal no. of Newton iterations 

where K is the ILU decomposition of the Jacobian matrix 8R/dY and r ( j )  is the residual of the 
linear system after the jth CGS iteration. 

4. NUMERICAL ILLUSTRATIONS 

4.1. Exurnpk problem I 

Because the initial salt mass fraction is zero, a steep salt front will emerge near the two gates 
immediately when they are opened. This means that at the start of the integration process a fine 
space mesh is required in the neighbourhood of the gates, together with small temporal integra- 
tion steps, so as to stimulate accurately the rapid onset of the fronts. The fine grid is realized by 
grid refinement near the gates and the small temporal step size simply by starting with a small 
step size value. For early times in the integration the two salt fronts are steep (aT=0.002, 
aL= 0.01) and for later times they smooth out due to the physical dispersion. In fact, for t +m the 
system runs into steady state with uniform salt mass fraction o = o o .  This means that for later 
times the space grid should be coarsened again and, most importantly, larger and larger step sizes 
in time should be taken to rcalize an efficient march to steady state. These comments also apply to 
the temperature distribution. Immediately after the gates are opened, a steep temperature front 
emerges. However, this front travels slower than the salt front and smooths out more rapidly 
since heat is absorbed by the porous medium. 

Using fourth-order Lagrangian interpolation (the operator PL- I of Section 3), we prescribed 
the following set of numerical parameters: 

TOLT=0.01, Ato=0.001, TOIS=0.01, A x = A ~ =  1/20, MAXLEV=3, 

scale (1 )  = lo5, scale (2)  = 0.25, scale (3)  = 290, (33) 

where Ax, Ay are the grid sizes of the coarsest grid. Since MAXLEV=3, the finest grid size 
allowed is 1/80. For the chosen pair of dispersivity coefficients zr  and aL, this is sufficiently small 
to avoid wiggles (the spatial discretization in the LUGR code is based on central differences). Note 
that the length of the integration interval is lo6 (steady state), which illustrates that a large 
variation in step size At will occur. 

Tables I1 and 111 provide an insight into the performance and efficiency of the integration 
process. Apparently, both the variable step size and the modified Newton strategies work 
successfully. Only one time-step rejection was counted and no Newton failure has occurred. The 
average number of modified Newton iterations per step per level is slightly above 3, which seems 
reasonable in view of the non-linearities in the brine transport model. Note that we prefer to 
choose the maximal allowed number of modified Newton iterations relatively large to a loid, as 
much as possible, Newton failures, since such a failure involves a full time-step rejection. The 
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Table 11. Example 1. lntergration history information for the numerical parameter set (33) 

No. of accepted time steps = 158 
No. of Newton iterations 

No. of rejected time steps = 1 
No. of Newton iterations 

No. of Newton failures = O  
No. of Newton iterations 

level 1 = 554 level 2 =492 level 3 =442 

Table Ill. Example I. No. of CGS iterations for the numerical parameter set (33) 
counted per modified Newton iteration and levelwise accumulated over all time steps 

Level 1 Level 2 Level 3 

1st Newton iteration 
2nd Newton iteration 
3rd Newton iteration 
4th Newton iteration 
5th Newton iteration 
6th Newton iteration 
7th Newton iteration 
8th Newton iteration 

193 1 
1387 
577 
140 
41 
2 
5 
2 

-t 
4085 

1940 
1034 
269 

35 
2 
1 
0 
0 

-- + 
328 I 

1980 
93 1 
170 
21 

2 
I 
0 
0 

3105 
+ ~~ 

average number of CGS iterations per modified Newton iteration is about 7, which is very 
effective. Note that these numbers refer to the complete integration process over the entire time 
interval [0, lo6], using a total of 158 full time steps with a heavily varying step size At. Also note 
that at level 2 and 3 the work load differs per time step, since at  these levels the integration 
domains and, hence, the size of the matrix problems vary in time. 

Figures 1 and 2 show the salt mass fraction and the temperature distribution at various time 
points together with the grid configuration. The figures nicely show the grid evolution in time. 
Note that for early times the fine grid covers only a small portion of the space domain. Upon 
reaching the steady state, where the distributions become constant, the number of grid levels is 
automatically reduced to one (not shown in the figures). Hence, the method then integrates only 
on the coarse 20 x 20 grid. A comparison of the two figures shows that the temperature front is 
slower than the salt front and also less steep, which is in accordance with the physics. We also see 
time-dependent refinement near the vertical and upper boundary of the (vertical) space domain. 
This particular refinement is due to the Neumann conditions (see first and second line of (15)). 
When the salt front hits these boundaries, the Neumann condition becomes difficult to solve on 
a coarse grid as this condition gives rise to a kink in the solution. Hence, a local refinement is 
natural. For later values of time the kink disappears and the refinement is no longer needed. 

4.2. Exumple problem 11 

In the numerical experiment with this example we have closed the right gate so that salt water is 
injected only through the left one. Hence, here we deal with a single saltwater-freshwater front 
which first collides with the region of impermeability and then must flow around it. This gives rise 
to a more difficult flow pattern than in Example I and, hence, also to a more costly computation. 

For ease of application of our (present) research code we used simple second-order linear 
interpolation. The more accurate fourth-order Lagrangian interpolant can be used too, but 
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Figure 1. Examplc I .  co-distribution at t = 5 x  lo2, 5 x lo3, lo4, 2 x  lo4 with the corresponding grid configuration 

requires some additional programming effort. Tables IV and V give the same information as 
Tables I1 and 111, again for the numerical parameter set (33). The average number of modified 
Newton iterations per step per level is about 3.5 and the average number of CGS iterations per 
modified Newton iteration is about 8 for level 1 and 6 for levels 2 and 3. We conclude that also in 
this experiment the BDF scheme with the implemented solvers performs well. 

Figure 3 shows the salt mass fraction at  various time points, together with the grid configura- 
tion. These time points are taken larger than in Example I since the salt intrusion around the 
region of impermeability needs more time. Of course, for early times, i.e. before the salt front 
collides with this region, the salt mass concentration and the grid configuration are similar as in 
Figure 1, except that around the closed right gate no front exists, thus, in this neighbourhood the 
coarse 20 x 20 grid is used. A careful inspection of the solution plot for t =  30000 reveals some 



58 R. A. TKOMPERT. J. G .  VERWER AND J. G. BLOM 

Figure 2. Example I. 7’-distribution at I = 5 x 10’. 5 x lo3, lo4, 2 x lo4 with the corresponding grid conliguralion 

Table 1V. Example 11. Intergration history information for the numerical parameter set (33) 

No. of accepted time steps = 262 
No. of Newton iterations 

No. of rejected time steps = 4 
No. of Newton iterations 

No. of Newton failures = 0 
No. of Newton iterations 

level 1 =992 level 2 = 895 level 3=835 

small inaccuracies near the local refinements along the right vertical and upper boundary. As in 
Example I, the refinements are necessary to resolve accurately the Neumann boundary condition. 
Apparently, at this point of time, a larger region of refinement seems desirable here. 

To provide an accuracy measure, we have included Figure 4. This figure shows the so-called 
breakthrough curves for the salt mass fraction (1) obtained in two experiments. The first one is the 
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Table V. Example 11. No. of CGS iterations for the numerical parameter set (33) 
counted per modified Newton iteration and levelwise accumulated over all time steps 

Level 1 Level 2 Level 3 

1st Newton iteration 3178 2839 2893 
2nd Newton iteration 2497 1487 1387 
3rd Newton iteration 1286 669 3 60 
4th Newton iteration 571 20 1 87 
5th Newton iteration 163 1 24 
6th Newton iteration 5 0 6 
7th Newton iteration 5 0 0 

-+ 
771 1 5197 4751 

+ + ~~ 

Figure 3. Example 11. o-distribution at t =  lo', 2 x lo', 3 x loA, 6 x 10' with the corresponding grid conl igurahn  
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Figure 4. Example 11. Breakthrough curves for o for O <  t <  lo6 and (x, y)=(0.1125,0.1) (upper plot), (x, y)=(0.7625. 0.5) 
(middle plot), (0,1125, 0.8) (lower plot) 
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Table VI. Example IT. No. of CGS iterations on the uniform 80 x 80 grid for the numerical parameter set 
(33), counted per modified Newton iteration and accumulated over all 236 time steps. The average no. of 

CGS iterations per Newton iteration is 25.0. Per time step the average amounts to 80.2 

Newton iteration no. 1st 2nd 3rd 4th 5th 6th 7th 8th 9th Total 

11663 5505 1318 364 5 27 1 41 2 18923 

three-level experiment. In the second experiment we have rerun the problem, using again the 
parameter set (33), but now on a single 80 x 80 uniform grid. A third experiment on the 80 x 80 
uniform grid with TOLT ten times smaller has been carried out to assure that the temporal error 
is not visible in the uniform-grid curves. This indeed turned out to be true so that the break- 
through curves obtained in the second experiment can be used to check whether the local 
refinement alone introduces a visible difference. Recall that the finest grid of the three-level 
experiment has also 1/80 as mesh width. Figure 4 shows that in the three-level experiment the salt 
front travels slightly faster (upper line) through the point (x, y )  = (0.7625, 0.5) at the right of the 
region of impermeability and (x, y)=(0.1125,0.8) above it, while at the point (x, y)=(01125,0.1) 
beneath it the curves are equal up to plotting accuracy. We blame thc heuristic refinement 
strategy for the observed phase errors. The heuristics simply lies in the fact that the phase error 
can be removed by forcing more local refinement. The plots in Figure 3 indeed reveal that when 
the front travels through (x, y)=(0.7625,0.5), a grid size of 1/40 is used, whereas at the first point 
the finest grid size is 1/80 upon front passing. On the other hand, the mathematically rigorous 
local refinement theory proposed in Reference 12 assures that the local refinement does not 
decrease the spatial accuracy, while it also attempts to avoid unnecessiraly large local refinement. 
This theory also controls accumulation of the inevitable (in this case linear) interpolation errors. 
Apparently, the comparison supports the use of more rigorous strategies like that proposed in 
Reference 12. 

We conclude this section with some integration history of the uniform 80 x 80 computation, so 
as to enable an efficiency comparison with the data of Tables IV and V. We counted 236 accepted 
time steps, 1 rejected time step, 758 modified Newton iterations and 0 Newton failures. Hence, the 
uniform grid integration requires somewhat less steps and also less Newton iterations than the 
three-level integration. However, due to the smaller matrix dimensions, in the three-level compu- 
tation the required total number of CGS iterations on grid level 3 is considerably less than the 
total number required in the uniform grid case (4757 against 18923; see Table VI). In the 
three-level computation we also have to take into account the work load for level 2 and level 
1 and other overhead, but, as a rule, the finest grid computation is the most expensive one. 

Finally, we give some C P U  times. On the CRAY Y-M P4/464 the code needed 3969 s for the 
80 x 80 uniform grid computation, versus 914s. for the three-level one (using one CPU). On the 
INDIGO SGI workstation the C P U  times are, respectively, 24 886 s and 41 16 s. We emphasize 
that, except for the Netlib CGS routine, the codc has not yet been optimized towards the CRAY 
architecture. 

5. FINAL REMARKS 

Adaptive-grid methods are meant for problems possessing rapid local transitions in their 
solution. Thc brine transport problem of Section 2 possesses such rapid transitions, both with 
respect to the spatial variables and temporal variable. Hence, this particular flow problem is an 
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excellent candidate to be solved on time-dependent adaptive grids, while using, in addition, 
variable step sizes in time. 

Our method of choice for time-dependent adaptive grids is based on the local uniform grid 
refinement approach. The LUGR approach of integrating on finer and finer nested subgrids, 
overlaying one another, provides much flexibility in the selection of the discretimtion schemes. 
An adaptive-grid LUGR method can be combined in many different ways and, if desired, highly 
tailored to the problem class at hand in connection with the choice of spatial discretization and 
time-stepping scheme. - l4 Note that our Cartesian grid structure, which for certain applications 
can be too restrictive for geometrical reasons, is not necessary and finite-element or finite-volume 
schemes on structured triangular grids can be developed as well. 

As mentioned in Section 3.3. in the near future we will first extend the refinement analysis of 
Reference 12 to the genuine D A E  case. Although the present strategy from Reference 1 1  works 
alright, its heuristics leave the user with the task of choosing a reasonable value for the parameter 
TOLS. The comparison carried out for Example 11 has nicely illustrated this. The refinement 
analysis from Reference 12 underlies the assumption that the spatial error of the multilevel 
scheme should be equal to the spatial error of the finest gridlevel used without any adaptation. 
This, of course, is an optimal situation for LUGR methods. 

We emphasize that the fully implicit LUCR method of Section 3 has not been tailored to the 
current brine transport problem. On the contrary, it can be used on a much wider class of PDEs 
of first-order in time and second-order in space. This method has in fact been bet up in accordance 
with the method of lines approach: the spatially discretued problem, here obtained with 
second-order central differencing, is numerically treated by the second-order BDF method as if it 
is a common stiff ODE/DAE system. In the special case of the brine transport problem, this may 
not necessarily be the fastest way of time stepping. On the other hand, this approach is most 
reliable and very robust. For example, it readily admits the inclusion of more terms in the PDE 
problem. like sources and sinks. chemistry, etc. Also note that the brine transport problem rcquires 
an implicit method (for the mass balance equation), because the mass balance equation becomes 
infinitely stiff for /l= 0, using the method-of-lines terminology. Obviously because the LUGR 
method works fully implicit and the coupled brine transport problem gives rise to large sets of 
non-linear algebraic equations, even on the local subgrids, an efficient solution procedure for 
these sets is a prerequisite. To our experience, the combination of the modified Newton method 
and the linear solver CGS performs very satisfactorily on the brine transport problem (see Section 
4). However, we believe that there is still room for improvement since the development of fast 
iterative non-symmetric-matrix solvers is ongoing. Needless to say that in the setting of our 
Cartesian grid structure, the multigrid technique is also an excellent candidate to be tried out. 
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